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Abstract. Hydrodynamic interaction of mutually moving airfoil cascades is investigated. It is shown that the semi-
empirical theory of potential-vortical interaction of two mutually moving cascades in incompressible flow allows
one to describe correctly the features of their mutual effect for various gaps between cascades and relations of
their pitches. Application of the above theory to a flow around three cascades of the stator-rotor-stator type
allows to determine the basic mechanism of the stators’ mutual shift effects (clocking effects). To close the the-
ory regarding the vortical interaction of cascades, a semi-empirical model of turbulent diffusion in a non-uniform
flow of the periodic vortices descending from airfoils is proposed. Theoretical results are compared with data from
numerical and physical experiments. Comparison with results of numerical modeling is based on the solution of
the Reynolds equations for a viscous gas closed by the (q-ω) model of turbulence. Results published here and
elsewhere are used for comparison with measurement data.

Key words: cascade of airfoils, clocking effect, periodic vortex wakes, rotor-stator interaction

1. Introduction

Rotor-stator interaction is one of the most topical and challenging problems of turbomachine
aerodynamics. The enormous experience accumulated during the development of gas-turbine
engines and power plants proves to be insufficient for estimating the pressure pulsations at
the design stage, causing blade vibrations, radiated noise, and gas-dynamic losses in promis-
ing compressors and turbines designed for high-power characteristics of stages. This has given
rise to numerous research activities involving mainly by numerical methods.

Analytical and semi-analytical methods, whose development is dealt with in the present
work, are based on more specific flow models. They enable one to obtain solutions that clearly
describe the qualitative features of blade-rows interaction within the framework of the accepted
assumptions. Such solutions, which are necessary both for setting up experiments and for engi-
neering estimates, successfully supplement numerical methods towards the solution of more
general problems. The present paper contains results obtained by the authors in a theoretical
study of the flow of mutually moving cascades. For comparison and illustration of results, both
the experimental data and the numerical solutions obtained by authors are used.

The basic part of the paper is devoted to the development of the theory of potential-
vortical interaction of cascades in incompressible flow [1–4]. The unsteady velocity disturbances
caused by two mutually moving cascades are assumed to be potential almost everywhere in
the flow, and turbulent vortex wakes of the cascade located upstream are described by the
self-similar theory. The obtained solution has allowed us to estimate theoretically for the first
time the effect of unsteady interaction of cascades on time-averaged aerodynamic loadings
and to describe correctly the effect of a gap between cascades on a level and character of
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unsteady loadings. A problem formulation within the framework of potential-vortex interac-
tion, which is now the most general available, is presented in Section 3.

An illustrative example of a successful application of the potential-vortical interaction the-
ory is the detection and subsequent explanation of the essential effect of the stators’ mutual
shift on an unsteady rotor flow in a system of stator-rotor-stator rows. The latter is known
as the clocking effect. It follows from these results that for an equal (or multiple) number of
stator vanes, the optimization of their mutual circumferential position is an efficient means
of reducing pressure pulsations caused by rotor-stator interaction. A direct experimental test of
the clocking effect was executed for the first time during the transonic and subsonic stages of
an axial compressor [5, 6]. Similar experiments and a numerical analysis have been executed for
turbine stages in [7–9]. Further experimental and numerical studies were performed for a sub-
sonic model stage of the axial compressor1 [10–13]. The practical importance of this problem
has led to a continuation of the investigations devoted to the clocking effect (see, for example,
[14, 15]).

The theoretical fundamentals of the clocking effect are stated in Section 4, where compar-
isons with data obtained on a large-size experimental set-up2 [16, 17] and with results of a
numerical solution of the Reynolds equations closed by the (q-ω) model of turbulence are also
presented. The numerical algorithm is described in Section 4.3.

One of the results of the numerical and experimental studies reported here consists of the
fact that the additional gas-dynamic losses caused by rotor-stator interaction are due to the
dissipation of periodic vortices blown off by the flow and, according to Thomson’s theorem,
arising behind blade rows. Classical modeling of the contact discontinuity line identified in the
flow of vortices, as well as the model of their viscous diffusion used in Section 3, does not
correspond to the observed structure of the wakes [18]. In Section 5, a semi-empirical model
of turbulent diffusion of free vortices, taking into account velocity distortion of their blow-
off in the wake flow behind airfoils, is proposed. Comparisons with experiment and results
of our numerical modeling show that the proposed solution can be used for the analysis of
the structure of periodic vortical wakes and, in particular, allows one to close the theory of
potential-vortical interaction of cascades by a more adequate physical model.

2. Periodic flow in a stage of an axial turbomachine

The stage of an axial turbomachine represents a set of rotating (rotor) and motionless (sta-
tor) blade rows in the annular channel with some axial gap �. At the design stage the flow
upstream of each row is usually assumed to be averaged over a circle. In this case, the relative
flow in a frame of reference connected with the given row is stationary and is defined com-
pletely by the row geometry and flow conditions at the inlet. Actually, for finite values of �
in each reference frame, rotating or motionless, the flow is periodic in time t with the basic
frequency of the next row blade passing.

Let (r, ϕ, x) and (r, ϕ0, x) be the cylindrical coordinates connected with a rotor and sta-
tor, respectively, and � be some flow parameter (velocity or pressure) evaluated in one of the
reference frames. At constant rotor rotation speed �0, a turn of any of the rows through an
angle �ϕ or �ϕ0 between respective lines of the next blades is equivalent to a displacement
in time of �ϕ/�0 for the rotor reference frame and of �ϕ0/�0 for the stator reference frame.

1Financial support was provided by the Russian Foundation for Basic Research, Grant No. 96-01-01847,
and CRDF, Grant No. 1-195
2Financial support was provided by the Russian Foundation for Basic Research, Grant No. 93-013-
16653, and ISTC, Projects Nos. 672-98, 672,2.
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Here the angles ϕ and ϕ0 are assumed to be counted up to a side opposite to rotor rotation,
and ϕ=ϕ0 at the initial moment of time t=0. This implies

�(r,ϕ, x, t+�ϕ0/�0)=�(r,ϕ, x, t); �(r,ϕ+�ϕ,x, t)=�(r,ϕ, x, t−�ϕ/�0),

�(r, ϕ0, x, t+�ϕ/�0)=�(r,ϕ0, x, t); �(r,ϕ0 +�ϕ0, x, t)=�(x, r, ϕ0, t+�ϕ0/�0),
(1)

where the coordinates ϕ and ϕ0 are connected by a ratio

ϕ=ϕ0 +�0t.

The common notation has been related here for the same physical quantity � in the moving
and fixed frames of reference, which does not give rise to any computational difficulties under
a one-to-one correspondence of the explicitly given arguments.

From (1) it is easy to conclude that any flow parameter in a stage of an axial turboma-
chine can be represented by the following Fourier series

�(r,ϕ, x, t) = ∑

k

∑

l

�kl(r, x) · ei2πl ϕ/�ϕ · ej2πk ϕ/�ϕ0 · e−j2πk�0t/�ϕ0 ,

�(r, ϕ0, x, t) = ∑

k

∑

l

�kl(r, x) · ej2πk ϕ0/�ϕ0 · ei2πl ϕ0/�ϕei2πl �0t/�ϕ.
(2)

Here summation over the indices k and l is performed from −∞ to +∞, and the imaginary
units subject to the condition of i · j �=−1 are denoted by i and j.

The coefficients of the expansions (2) can be determined by any of the two equalities

�kl(r, x)= 1
�ϕ0T0

∫ �ϕ0

0

∫ T0

0
�(r, x, ϕ0, t) · e−i2πl t/T0 · e−i2πl ϕ0/�ϕ · e−j2πk ϕ0/�ϕ0 dtdϕ0

= 1
�ϕT

∫ �ϕ

0

∫ T

0
�(r, x, ϕ, t) · e+j2πk t/T · e−j2πk ϕ/�ϕ0 · e−i2πl ϕ/�ϕdtdϕ, (3)

where T0 =�ϕ/�0 and T =�ϕ0/�0 are the time periods of change of the flow parameters in
the stator and rotor reference frames, respectively.

Let

ϕ= ϕ̄+m·�ϕ, m=0,1, . . . ,N1 −1,

ϕ0 = ϕ̄0 +m·�ϕ0, m=0,1, . . . ,N2 −1,

where ϕ and ϕ0 are the angular coordinates of points on the original (m= 0) blades of a
rotor and stator, respectively, and N1 and N2 are the respective numbers of blades in their
total tangential period. Then (2) implies that each row of a stage induces a generally periodic
flow containing one tangential period, namely N1 or N2 blades, respectively. Thus, the time-
averaged linear aerodynamic loadings acting on a blade of a rotor (R(1)(r)) or stator (R(2)(r)),
are equal to

R(1)(r)=R(1)00 (r)+
∑

k
(k �=0)

Rk0, R(2)(r)=R(2)00 (r)+
∑

l
(l �=0)

R0l , (4)

where R(1)00 and R(2)00 are loadings on rotor and stator blades obtained by a tangential averag-
ing of the relative flow upstream of each row, respectively, and Rk0 and R0l are the Fourier
coefficients (2) obtained for aerodynamic loading on the rotor or stator blades.
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Another important consequence of the representations (2) is the tangential non-uniformity
of flow pulsations in a stage row. So, according to (2), for an isolated rotor the flow param-
eter � in an absolute frame of reference can be written as

�(r,ϕ0, x, t)=
∑

l

�0l (r, x) · ei2πl ϕ0/�ϕ · ei2πl t/T0 .

This implies that the root-mean-square (rms) value of � pulsations over the period T0,

〈�〉t =
√

1
T0

∫ T0

0
�2dt=

√∑

l

∣
∣�0l

∣
∣2,

does not depend on the tangential coordinate ϕ0. For a stage rotor, it is easy to conclude from
(2) that 〈�〉t has the tangential period �ϕ0.

The above consequence means, in particular, that the difference in time-averaged static
pressure for a stage rotor measured by motionless transducers on the housing or in a stream,
appears to be non-uniform in the tangential direction. As was shown in [5, 6], this non-
uniformity can be rather significant for highly loaded stages. On the other hand, it is clear
that the tangential non-uniformity of time-averaged parameters of an absolute flow may be
used as a measure of rotor-stator interaction.

It follows from (3) that, for the determination of any flow parameter concerning a rotor, it
is sufficient to measure its change in time for a stator vane pitch �ϕ0. This property is widely
used by the present authors when obtaining the experimental data for comparison with the-
oretical results.

Thus, the investigation of hydrodynamic interaction of rotors and stators in axial turboma-
chines leads to a need for investigating cascades of generally periodic flow, whose parameters
may be represented in the form (2). Stationary gas-dynamic characteristics of both individ-
ual rows and stages as a whole are understood as a result of time-averaging of the series (2),
and pressure pulsations on blades and in the stream are determined by the coefficients �kl
(k, l=0,±1, . . . ). The theoretical results presented in the following are for 2D flows when the
dependence of the coefficients �kl on radial coordinate r is assumed to be insignificant.

3. Two mutually moving cascades of airfoils in incompressible flow

If the stream surfaces in a stage are assumed to be circular cylinders at each moment of time
then, for a fixed radius r, the task is reduced to the calculation of the flow around two mutu-
ally moving cascades of airfoils in a uniform flow at an infinite distance upstream (Figure 1).

3.1. Mathematical formulation and solution

Let a continuous incompressible flow be realized on cascades of blades; the unsteady velocity
disturbances can be assumed to be potential everywhere outside the zone of vortical wakes of
the cascades. The required complex conjugate flow velocity may then be presented as

V�(z, t)=V (z, t)+J (z)+J1(z, t)+J2(z, t). (5)

Here z= x + iy is the complex coordinate of a point, V is an analytical function of z, J
is a piecewise continuous function determining the fluid velocity in the stationary vortical
wakes of the cascades in the absence of their interaction, J1 and J2 are the velocities gen-
erated by periodic vortical wakes arising behind cascades 1 and 2, respectively, where cascade
1 is located upstream (Figures 1 and 2).
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Figure 1. Mutually moving cascades of airfoils.

Figure 2. Flow velocity in steady (a) and unsteady (b) wakes of cascade 1.

If, for definiteness, it is assumed that cascade 2 moves with respect to cascade 1 at a speed
u= r�0, then V� can be presented by a series such as (2), where it is necessary to put

ϕ0/�ϕ0 =y0/h1, ϕ/�ϕ=y/h2, �0/�ϕ0 =−u/h1, �0/�ϕ=−u/h2, y=y0 −ut.

Here h1, h2 are the pitches of cascades 1 and 2, respectively.
A generally periodic analytical function V (z, t) is expressed in terms of its boundary val-

ues V1 and V2 on cascades of blades 1 and 2 as Cauchy integrals as follows:

V (z, t)=�1[V1, z]+�2[V2, z]+V∞,

�µ[Vµ, z]= 1
H i

Nµ−1∑

m=0

∮

Lµm

Vµ(ζ, t)
dζ

1− exp[2π(ζ − z)/H ]
, µ=1,2. (6)

Here Lµm is an airfoil of the µth cascade with number m= 0,1, . . . ,Nµ− 1 in the reference
frame connected with the given cascade; H =N1h1 =N2h2 is the total spatial period of cas-
cades; V∞ = limz→−∞ V is the absolute flow velocity at an infinite distance upstream of the
cascades. The complex coordinate z of a point in a moving coordinate system is related to
the coordinate z0 of the same point in the stator coordinate system by virtue of the equality
z= z0 − iut . Figure 1 shows a positive tracing of the profiles Lµm and the arc coordinate σ
measured from the outlet edge.
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Let the point z tend to the points z0 ∈ L10 and z ∈ L20 of the flow region. The lim-
iting values �−

1 and �−
2 of the Cauchy integrals �1 and �2 are then determined by the

Plemel–Sokhotzky formulas, and the regular terms in (6) are expanded into the series

�2[V2, z0] = −
∞∑

n=1

∑N2−1
m=0

1
H i
∮
L20
V2(ζ + imh2, t) · e−2πn(ζ−z̄0)dζ · e

−i2πn(ωt+ m
N2
) · e−2πn�̄,

�1[V1, z] =
∞∑

n=0

N1−1∑

m=0

1
H i

∮

L10

V1(ζ + imh1, t)·e2πn(ζ−z̄)dζ · e
i2πn(ωt+ m

N1
) · e−2πn�̄,

(7)

where

z̄0 = z0 +�
H

, z̄= z−�
H

, �̄=�/H, ω=u/H.

It follows from (7) that the boundary values Vµ (µ= 1,2) of the function V (z, t) on air-
foils with numbers m=0,1,2, . . . ,Nµ−1 may be presented in the form

Vµ(zµ, t)=
∞∑

n=0

n∑

k=−n
Uµkn(zµ) · ej2πk(ωt+mψµ) · e−2πn�̄, (8)

where
z1 = z0 ∈ L10; z2 = z ∈ L20; Uµkn = uµkn + j sqn(k) · vµkn; ψ1 = 1/N1; ψ2 = −1/N2.

Indeed, for points z0 ∈L10 and z ∈L20, the substitution of (8) in (6) and (7) results in the
equalities

∞∑

n=0

n∑

k=−n

{
Uµkn−�−

µ [Uµkn,zµ]
} · ej2πkωt · e−2πn�̄=

∞∑

n=0

�µn(zµ, t) · e−2πn�̄+V∞, (9)

�1n=−
n−2∑

m=−n

n∑

k=k1

1
h2i

∮

L20

U2(ζ, n+m−k, k) · e−2π(n−k) (ζ−z̄0)dζ ·ei2πmωt ·D2m, (10)

�2n=
n∑

m=−n

n∑

k=k2

1
h1i

∮

L10

U1(ζ,−n+m+k, k)·e2π(n−k) (ζ−z̄)dζ ·e−i2πmωt ·D1m,

where

Uµ(ζ,m, k)=uµmk(ζ )+ i sgn(m) ·vµmk(ζ ), Dµm=





1, m
Nµ

=
[
m
Nµ

]

0, m
Nµ

�=
[
m
Nµ

] ,

k1 =
[
n+m+1

2

]

, k2 =
[
n−m+1

2

]

, µ=1,2,

and the symbol [A] denotes the integral part of a rational number A.
From the above property of the values Dµm(µ= 1,2) it is obvious that in the right-hand

side of (9) only items with index l= l1Nµ (µ=1,2; l1 =0,±1, . . . ) are kept and, hence, (8) is
a particular case of the expansions (2).

A significant advantage of the representation (8) is that, as follows from (10), the functions
U1kn for a fixed value of n are determined completely by the values U2kn1 , where n1 ≤n− 1.
Thus, the boundary values of function V (z, t) can be calculated by approximations in powers
of the parameter

�0 = exp(−2π�/H)<1.
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The inversion of the operator on the left-hand side of (9) allows to express each value
Uµkn (µ=1,2) as a recurrence formula.

It can be seen from the obtained results that, for a potential interaction of cascades
(J =J1 =J2 ≡0), the dependence of the velocity disturbance on the gap � between them can
be expressed explicitly. This circumstance is useful for the analysis of the hydrodynamic effects
arising for small gaps, when potential interaction is dominant.

Introduction of the function J (z) is needed because the cascade located downstream inter-
acts with the vortical wakes that arise behind the airfoils of the previous cascade owing to
trailing vortices in the flow (Figure 2a). To calculate J , the theory of a self-similar turbulent
vortical wake, which is determined completely by the empirical factor of profile losses ζ ∗, is
used here. In the theory of hydrodynamic cascades the function J (z) can be set as (see [19,
20]):

V1 +J (z)=V1






1, out of vortical wakes

1− ζ ∗·h1· cosα
h(ξm)

cos2(π ·ηm/h(ξm)), in the zone of vortical wake
(11)

h(ξm)=1·52
√
ζ ∗·h1 cosα

√
ξm+b; m=0,±1, . . . ; ξm+ iηm= (z− zm) · eiα.

Here zm is the complex coordinate of the trailing edge of the mth airfoil of a cascade 1; V1 =
|V1|e−iα is the complex conjugate time-averaged velocity in a flow core behind cascade 1; h=
h(ξm) is the width of the vortical wake. The parameter b is determined from the condition
h(0)=1·21d, which is equivalent to the condition of finite thickness of a vortical wake in the
trailing edge whose diameter is equal to d. The constants in equality (11) and the form of the
function J (z) are determined as a result of systematic wind-tunnel tests of a large number of
airfoil cascades [19, 20].

When flow escapes from trailing edges continually, the interaction of cascades results in a
change of flow velocity circulation � on the airfoils. From here, according to the theorem of
total vorticity preservation in a continuous flow, vortices appear, which are translated by the
stream. They are located in the region of the vortical wakes. In the classical theory of flow
around airfoils with small periodic disturbances, the layer of free vortices is usually simulated
by a line of contact discontinuity of a tangent velocity located along the critical line of the
basic stationary flow. The condition of the absence of a static pressure jump across the con-
tact discontinuity line results in a formula for the local velocity discontinuity

γ (τ, t)=− 1
V0(τ )

∂�

∂t

∣
∣
∣
∣t=t1 , t= t1 +T (τ), T (τ )=

∫ τ

0

dτ
V0(τ )

, (12)

where V0(τ ) is a stationary flow velocity at the point with the arc coordinate τ counted from
the trailing edge along the critical line of the flow.

The complex conjugate velocity induced by the line of the contact discontinuity Lµ behind
the µth (µ=1,2) cascade equals

Jµ(z, t)= 1
H i

∫ ∞

0

Nµ−1∑

m=0

γµm(τ, t)
dτ

1− exp[2π(ζµ(τ)− z+ imhµ)/H ]
. (13)

Here ζ1 ∈L1, ζ2 ∈L2;γµm is determined from (12); τ is the arc coordinate of line Lµ.
In connection with the use of formulas (12) and (13), it is necessary to notice that integral

(13) diverges in case of a smooth trailing edge, where V0(τ )∼ τ near τ =0. Therefore, in calcu-
lations it is necessary to assume the trailing edge to be angular with an internal corner <π .
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The model of the contact discontinuity line, which is widely used in unsteady aerodynam-
ics, describes well the influence of free vortices on the aerodynamic loadings acting on an air-
foil. However, for the description of the interaction of unsteady (periodic) vortical wakes with
a downstream cascade, and also to estimate the gas-dynamic losses caused by dissipation of
the free vortices, the applicability of the model raises some doubts. In this connection, the
solution of the problem regarding the diffusion of a contact-discontinuity line in a uniform
viscous flow (Figure 2b) is used here to describe the interaction of free vortices behind cas-
cade 1 with cascade 2. In this case the function J1(z, t) behind the mth airfoil of cascade 1
is determined by (see [4])

J1(z, t)= V1√
π

[

�

(√
Re

4h1ξm
ηm

)

−
√
π

2
sgn(ηm)

]

· ∂�1m

∂t

∣
∣
∣
∣
t=t1

, t1 = t− ξm/V1, z= ξm+ηm,

(14)

where �(θ)=∫ θ0 e−θ2
dθ is the error function, Re=V1h1/ν0 is the Reynolds number, ν0 is the

kinematic viscosity. Thus, the vortical wake of cascade 1 contains near its axis a diffusion
layer of periodic free vortices. As follows from the properties of the integral �(θ), accord-
ing to (14) the diffusion-layer width is of the order of 1/

√
Re, which is rather small in com-

parison with the width of a stationary vortical wake for Reynolds numbers ∼105–106, which
are typical for gas-turbine engines. The question regarding the real structure of a free-vortices
diffusion layer will be considered in Section 5.

The condition of an attached flow on the cascade airfoils at each moment of time leads
to the equalities

Imi[Vµ rel(zµ, t) eiαµ ]=0, µ=1,2,

V1 rel(z1, t)=V1 (z0, t)+J1(z0, t), z0 ∈L10, (15)

V2rel(z2, t)=V2(z, t)+J2(z, t)+ iu+J (z, t)+J1(z, t), z∈L20,

where αµ is the angle between the tangent at point z and the Ox-axis for a positive (anti-
clockwise) motion along the contour Lµ0;Vµrel is the relative complex conjugate flow velocity
on an airfoil of the µ-th cascade.

The functions J1(z0, t) and J2(z, t) in (15) are determined by the equalities (13) and
according to (12) depend linearly on the circulation of the relative flow velocity on airfoils of
cascades 1 and 2. The values J and J1 in the expression for V2rel are specified by the equali-
ties (11) and (14) and, therefore, are determined by a profile loss factor ζ ∗ for cascade 1 and
by circulation of the relative flow velocity on its airfoils. Assuming z0 = z+ iu(z∈L20), it is
easy to formally represent the functions J =J (z, t) and J1 =J1(z, t) in the form of an expan-
sion such as (8) whose coefficients are expressed by a quadrature and depend on the gap �

between the cascades [4].
Substitution of (15) in (9) results in an integral equation with respect to the real (on i)

functions

Uµ(s)=Re[Vµ rel(zµ, t) eiαµ(s)], z1 = z0 ∈L10, z2 = z∈L20,

where s is the arc coordinate of a point, counted from the trailing edge of airfoil L10 or L20

in a positive direction around the contour.
The required function Uµ(s, t) may obviously be presented as an expansion of the kind

(8). An essential difference between such an expansion and the case of potential interaction
of cascades consists in the fact that its coefficients depend on the gap between cascades, �. It
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is easy to show that, for a fixed value of �, the convergence of series (8) for Uµ(s, t) is guar-
anteed. However, a practically necessary number of approximations in powers of the param-
eter �0 must be determined during the calculations. Clearly, the number of approximations
depends on the behavior of the vortical wake as determined by Equation (11).

Finally, the system of integral equations for the coefficients Uµkn(s) in expansion (8) of the
functions Uµ(s, t) is given by

K1k[U1kn]=�1kn[U2pq ], |p|≤q≤n–1,

K2k[U2kn]=�2kn[U1pq ], |p|≤q≤n,

Kµk[Uµkn]= 1
2
Uµkn− eiαµ(s)

H i

∮

Lµ0

Uµkn(σ ) ·
Nµ−1∑

m=0

ej2πkmψµ

{
1

1−exp[2π(ζ(σ )+imhµ− zµ)/H ]

−
∫ ∞

0

j2πkωt
V1µ(τ)

exp[−j2πkωT (τ)]dτ
1− exp[2π(ζµ(τ)+ imhµ− z)µ/H ]

}

dσ. (16)

Here zµ=zµ(s)∈Lµ0, ζµ∈Lµ, and V1µ (µ=1,2) is the velocity of spreading of free vortices
behind the µth cascade. The right-hand side �1kn of the first equation in (16) is easy to deter-
mine from Equation (10). In order to determine �2kn from the expression for �2 in (10), it is
necessary to take into account the representations of the functions J =J (z, t) and J1 =J1(z, t)

as the series (8).
For fixed values of n the integral equations (16), as well as in the case of potential inter-

action of cascades, are solved sequentially on the initial airfoil Lµ0 (µ= 1,2) of one of the
cascades. The uniqueness of the solution is ensured by the Kutta-Joukowski condition which
demands that the velocity on a sharp trailing edge of airfoils remains finite. The real (in i)
parts of (16) are Fredholm integral equations of the second kind. For closed piecewise smooth
airfoils Lµ0(µ=1,2) they are solved numerically by approximating an airfoil by an inscribed
polygon, on which parts the required function is assumed to be constant [21]. For replace-
ment of such an airfoil by the cumber line, the imaginary part of the equation of the form
(16) is used. The solution of this equation allows to obtain the difference of the relative flow
velocity on the pressure and the suction surfaces. The kernel of the integral equation is sin-
gular in this case and the method of singularities is used to obtain the numerical solution.

As can be seen from the construction of Equations (16), it is assumed that the flow around
cascade 1 is unsteady as a result of the potential effect of cascade 2 which, besides potential
disturbances, experiences the influence of periodic vortical wakes of cascade 1. An essential
aspect of the theory is related to the fact that the inverse effect of flow disturbances produced
by cascade 2 on vortical wakes is not taken into account in the determination of the effect of
vortical wakes on cascade 2. It should be noted that the effects of vertical-wake evolution in
a non-uniform flow [22] have shown to be of little influence on the level of variable loadings
for typical turbomachine cascades.

3.2. Comparison with experiment and some features of hydrodynamic interaction of
cascades

Figure 3 shows the results obtained in [23] of the measured quantity

λ2(�)=
max
(0,T2)

Y2(t)− min
(0,T2)

Y2(t)

Y20
,

where Y2 is the aerodynamic loading, acting along the front of an airfoil belonging to cas-
cade 2, and Y20 is its time-averaged value. The measurements were carried out over the mean
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Figure 3. Level of exciting forces as a function of axial
gap. 1 – calculation by the model of potential-vortical flow,
2 – calculation by the model of potential-vortical flow in
quasi-steady statement (J �= 0, ), J1 = J2 = 0), 3 – calcula-
tion by the model of only potential flow, o, x – the exper-
imental data at N1 =9,N2 =10, τ1 =0·71, τ2 =1·33.

Figure 4. Additional circulation as a function of gap
between cascades.

radius of the stator for a stage in a low-speed (Mach Number ∼0·06) axial compressor. The
geometrical parameters of the cascades are given in Figure 3.

The value λ2y=λ2y(�) obtained by a numerical solution of Equations (16), and the subse-
quent calculation of the pressure by the Cauchy-Lagrange formula, are presented in Figure 3
for these cases: potential interaction of cascades (J =J1 =J2 ≡0, curves 3); the quasi-station-
ary solution (J �=0, J1 =J2 ≡0, curves 2), and full calculation (curves 1). In these calculations
the coefficient of the profile losses ζ ∗ was set at 0·021.

As can be seen from a comparison of experimental and theoretical results, in the region of
small gaps � between cascades, the effects of potential interaction of the cascades dominate.
For ��1 the properties of the hydrodynamical of the cascades follow from a decomposition
(8). For �→0 the amplitudes of the time harmonics increase because �0 is close to unity. In
particular, the time-averaged (a “zero” harmonic) velocity on the airfoil of the µ-th cascade
is equal to

Vµ(zµ)=Uµ00 +
∞∑

n=1

Uµ0n·e−2πn�/H , µ=1,2,

where Uµ00(µ=1,2) is determined by the relative flow velocity at the inlet of the µ-th cascade
for �=∞.

As an example, we show in Figure 4 the dependence of the quantity

λ2(�)= �20(�)−�200

�200

on �, where �20 is the time-averaged velocity circulation on an airfoil of cascade 2, and �200

is its value corresponding to �=∞. The function λ= λ(�) is calculated by the solution of
Equations (16) in the case when cascade 1 is a dense cascade of arcs, and cascade 2 is a
widely spaced cascade of plates. In the above cases the integral equation (16) are solved ana-
lytically [1] and the values Vµ(µ=1,2) are approximately equal to
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V1 =u100 +
2∑

k=1

[u1kk cos(2πkωt)+v1kk sin(2πkωt)] · e−2πk�/h2

V20 =u200 +u220e−4πk�/h2 .

The solidity of cascade 2 is denoted in Figure 4 by τ2 =b2/h2 (b2 is the chord length).
As can be seen from the obtained data, the effect of an axial gap on the time-averaged

fluid deflection in a cascade may be significant. It is related to the backward effect on the
given cascade of velocity pulsations exerted by it on the next cascade.

Relatively large values of the amplitudes of the harmonics, with m= 1,2, . . ., which for
cascade 2 correspond to the conditions m·h2/h1 = 1,2, . . ., and for cascade 1 to conditions
m·h1/h2 = 1,2, . . ., is also a characteristic property of cascade interaction for small gaps �.
According to expansion (2), the specified values of m correspond to those harmonics of the
velocity disturbances that act in phase on the airfoils of cascade 1 or 2. It should be noted
that an increased aerodynamic reaction for flow disturbances that are in-phase with respect to
airfoils of the cascade, is related to an additional time-averaged flow turn and is not restricted
to small gaps �.

The significant effect of the parameter N1/N2 =h2/h1 on the level of unsteady loading act-
ing on mutually moving cascades is a result of the above property. Results of a calculation
of λ2y for potential interaction of two cascades of curvilinear arcs are presented in Figure 5.
The calculations were carried out within the range 6

7 ≤N1/N2 ≤ 16
7 for constant dimensionless

gap �/h1 and cascade solidities τ1 and τ2. Around the values N1/N2 =1/2,1,2, local maxima
of λ2y are observed. The significant gradients around the point N1/N2 = 1 point to possible
numerical errors caused by the replacement of the valid relation N1/N2 by a relation close
to it with lower values of N1 and N2. Using an exact representation of N1/N2 in the analy-
sis of unsteady aerodynamic loadings is important for determining the level of the harmonics
exciting the resonant vibrations of blades in a turbomachine stage. Some experimental data
confirming the character of dependence of unsteady loadings on N1/N2 are presented in [20].
Results of numerical modeling are presented in [12].

In the region of moderate gaps, 0·15h1 ≤ � ≤ 0·5h1, which are typical for the major-
ity of turbomachines, potential and vortical interactions of cascades can be comparable. As
can be seen in Figure 3, in the specified region of the �-variation the difference between
the theoretical and experimental data is most pronounced. Undoubtedly this is due to the

Figure 5. The level of exciting forces on the second
cascade as a function of the ratio of numbers of air-
foils.

Figure 6. Non-monotonic dependence of a level of
exciting forces on the axial gap between cascades.
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Figure 7. Stator-rotor-stator cascades of airfoils.

adequacy of the used model of periodic vortical wakes of cascade 1. It is interesting to note
that, for the presented examples, a quasi-stationary solution (J1 =J2 ≡0) is more satisfactory
when the potential interaction is precisely taken into account, and a widely accepted theory
of self-similar vortical wakes behind the upstream cascade is used.

One feature of cascade interaction in the region of moderate gaps is clearly visible in Fig-
ure 3 and has also been noted in experiments [24]: a non-monotonic dependence of � of the
level of unsteady loading on cascade 2. This result seems paradoxical, since it does not cor-
respond to the widespread idea that an increase in the axial gap between blade rows inevita-
bly results in a reduction of the pressure pulsations caused by rotor-stator interaction. The
calculation performed under the stated theory for turbine cascades is presented in Figure
6. Here the dependencies λ2y = λ2y(�) are related to the potential, vortical, and potential-
vortex interactions of cascades. The first two curves show a monotonous decrease of λ2y with
increasing �. A full calculation of potential-vortex interaction, however, results in a signifi-
cant non-monotonicity of the dependency λ2y =λ2y(�). The most evident explanation of this
phenomenon is that potential disturbances behind cascade 1 propagate perpendicularly to the
front of the cascades (along line AB), whereas the wake (convective) flow disturbances prop-
agate mainly along the streamlines of the relative flow. For different gaps � this circumstance
results in different phase displacements between the specified disturbances on an airfoil of
cascade 2 and, as a result, in different total disturbances on them. Clearly, for a sufficient
widening of the axial gap, vortical and potential-vortex disturbances come closer and the
rotor-stator interaction can be described by the effect of only vortical wakes behind cascade
1 on cascade 2.

4. Flow in a cascade moving between two motionless cascades

In multistage turbomachines each blade row, except for the extreme ones, interacts with the
two next stators or rotors. In the 2D problem statement this corresponds to a flow around
three cascades of the type stator-rotor-stator or rotor-stator-rotor. If one assumes the flow
upstream of the cascades to be uniform, the middle cascade is subjected to the joint effects
of the disturbances caused by the cascades located upstream and downstream. In this section,
we investigate some features of periodic flows through the specified set of three cascades.

4.1. Effect of the mutual position of extreme cascades

Figure 7 shows a set of cascades of the stator-rotor-stator type, where it is assumed for
definiteness that the middle cascade 2 moves at a speed “u” in the negative direction of
the Oy-axis with respect to cascades 1 and 3. When the interaction of extreme cascades is
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neglected, then, in accordance with expansion (2), the velocity disturbance of the incompress-
ible flow on an airfoil of cascade 2 may be written as

V2(x, y, t)=
∑

k

[V (12)
k (x, y,�12)e

j2πk y/h1 ·e−j2πk ut/h1 +

+V (23)
k (x, y,�23) ej2πk y/h3 ·e−j2πk ut/h3 ], (17)

where hµ(µ= 1,3) is the pitch of the µ-th cascade; the point (x, y) belongs to an airfoil of
cascade 2; �12 and �23 are the gaps between cascades 1-2 and 2-3, and the superscripts (12)
and (23) of the coefficients Vk correspond to interactions of pairs of the cascades 1-2 and 2-3,
respectively.

In (17) t=0 is assumed to correspond to a certain mutual circumferential position of the
airfoils of cascades 1 and 3. The ordinate y0 in the stator reference frame is related to y

by the relation y= y0 +ut . Thus, if one assumes that, for example, cascade 3 is shifted with
respect to cascade 1 along the front over a distance �y0 =ν·h3 in the direction of motion of
cascade 2, it corresponds to a shift of the time phase of interaction of the cascades 2 and 3
equal to �t=νh3/u.

Further let the pitch of one of the cascades 1 or 3 contain integer χ=1,2,3. . . pitches of
the other of the specified cascades, i.e., for example, h1 =χh3. Then (17) becomes

V2(x, y, t)=
∑

k

[V (12)
χ k + e−j2πkνV

(23)
k +

+
χ−1∑

m=1

V
(23)
χ k+m·ej2πmy/h1 · e−j2πmut/h1 ] · ej2πk y/h3 · e−j2πk ut/h3 . (18)

From (18) follows, that amplitudes of harmonic fluctuations with frequencies such as ku/h3,
where k=1,2,3. . ., depend on ν, i.e., from mutual displacement of the cascades 1 and 3. The
specified property is similar to an interference of two synchronous sources of disturbances. If
the pitches of the cascades 1 and 3 are identical, i.e., h1 =h3 (χ = 1), then all harmonics of
velocity disturbances V2 from both cascades will interfere. If the common period of cascades
1 and 3 is equal, namely Hs =N1h1 =N3h3, where N1 and N3 are mutually prime numbers,
then harmonics of disturbances with frequencies of such as kN1N3u/Hs , where k=1,2,3, . . .,
interfere.

As an illustration of the effectiveness of the mutual shift of the cascades 1 and 3, the
dependencies on ν of the relative jump ��2 of the flow velocity circulation �2(t) on the
period T =u/Hs on an airfoil of cascade 2 are presented in Figure 8, that is,

��2(ν)=�−1
200

[
max
t
�2(t)−min

t
�2(t)

]
, t ∈ (0, T ),

where �200 is the time-averaged value of �2, which does not depend on ν according to (18).
The determination of the values of V (12)

k and V
(23)
k (k=0,±1, . . .) was carried out by means

of the theory of potential-vortical interaction of cascades in the quasi-stationary problem for-
mulation. The cascade geometry is shown in Figure 7 for gaps between the cascades equal to
�12 = 0·84h1 and �23 = 0·27h3. The coefficients of the profile losses of the cascades 1 and 2
were taken equal to ζ ∗ = 0·023, and the relation h3/h1 was varied: h3/h1 = 1 (curve 1); 1/2
(curve 2), and 33/34 (curve 3).

The pulsation level of the velocity circulation on cascade 2 can be seen to depend signifi-
cantly on the shift of cascade 3 with respect to cascade 1. This effect is most significant for
the pitch relation h3/h1 =1 and is practically absent for h3/h1 =33/34, i.e., when N1 and N3
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Figure 8. Relative variation of computed velocity cir-
culation ��2 on cascade 2 as a function of mutual
position ν of cascades 1 and 3. 1 − h3/h1 = 1;
2−h3/h1 =1/2; 3−h3/h1 =33/34.

Figure 9. Averaged level of computed unsteady circu-
lation ��20 on an airfoil of cascade 2 (curve 2) and
effect of mutual shift of cascades 1 and 3 (λ, curve
1) as a function of relative gap �23/h3 between cas-
cades 2 and 3.

are mutually prime numbers. It is typical that in the latter case the average pulsation level is
maximal.

It follows from the obtained results that the pulsation level of the flow velocity circulation
on a cascade interacting with two cascades located upstream and downstream is characterized
not only by its averaged value

��20 =
∫ 1

0
��2(ν) dν,

but also by the value of the variation of ��2(ν) in the interval 0<ν<1,

λ=max
ν
��2(ν)−min

ν
��2(ν).

According to (18) the values ��20 and λ depend on the axial gaps �12 and �23 that deter-
mine the level of interaction of cascade 2 with cascades 1 and 3.

The dependencies λ=λ(�23) (curve 1) and ��20 =��20(�23) (curve 2) that are presented
in Figure 9 were obtained for a fixed axial gap �12 = 0·84h1 and the relation h3/h1 = 1.
The monotonic decrease of ��20 with increasing �23 is obviously related to the asymptotic
decrease of the upstream effect of cascade 3. At the same time, the value λ=λ(�23) describ-
ing the effect of a mutual shift of cascades 1 and 3, reaches its maximum for that value of
�23, for which the upstream effect of cascade 3 is comparable to the downstream effect of
cascade 1. It should be noted that, contrary to a widespread belief, this situation is typical
for turbomachine operations with axial gaps between blade rows that are quite common.

It is now clear that the effect of mutual displacement (clocking) of stators in a cascade
system of stator-rotor-stator type can be described by the theory of potential-vortical interac-
tion of cascades. Practically, the specified effect affords an opportunity of reducting periodic
flow-velocity pulsations, caused by rotor-stator interaction. This reduction can be achieved by
optimization of the axial gaps between rows, the number of blades in them and a mutual cir-
cumferential arrangement of bordering rows.

Within the framework of the considered model of cascade interaction at clocking of the
extreme rows, the time-averaged linear aerodynamic loading on the rows does not change.
However, according to Section 3, significant variation of circulation on cascade 2 results in
a corresponding alteration of the intensity of the periodic free vortices that are shed from its
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airfoils and result in gas-dynamic losses because of dissipation. It is, therefore, to be expected
that the clocking of stators or rotors affects the above losses and, respectively, the total pres-
sure variation in a turbomachine. For the analysis of vortex-formation processes that are
caused by the interaction of three cascades of airfoils and to assess the validity of the semi-
analytic theory, a numerical simulation of the flow will be carried out.

4.2. Numerical method

A numerical method of solution for the unsteady Reynolds-averaged Navier-Stokes equations
[25], closed by the two-equation (q-ω) turbulence model proposed in [26], is applied here to
calculate the turbulent flow of a viscous gas through a cascade system of the stator-rotor-
stator type. For each cascade in its own frame of reference a multi-block computational O-H
grid is generated with the period along the front equal to the pitch of the cascade, and fixed
distances from the inlet and outlet fronts. Thus, for a given moment of time, the computa-
tional flow domain through the set of three cascades forms a compound grid, with the com-
mon period along the front equal to H =N1h1 =N2h2 =N3h3. The fragment of such a grid for
the cascades shown in Figure 7 for N1 =N3 =34,N2 =35 is presented in Figure 10. Here the
O-type grid, which is generated in the vicinity of each airfoil, contains 100 × 16 grid points,
and the H-type grid contains 81×33 grid points on one pitch of each cascade. The total num-
ber of grid points was 440119.

On the airfoil surface boundary the no-slip and adiabatic wall (∂T /∂n=0) conditions are
imposed on the turbulence variables: q= ∂ω/∂n=0.

On the left (inlet) domain boundary the stagnation temperature, total pressure, and the
flow angle, and on the right (outlet) boundary the static pressure, were specified. The turbu-
lence parameters q∞,ω∞ were fixed on the inlet boundary. On the zonal boundaries of the
adjacent cascade grids, flux conservation is maintained. This is similar to the approach pro-
posed in [27].

The required solution has period H along the front of the cascades. This period can con-
tain a various, including �= 1, number of pitches of each of the cascades (a condition of the
generalized periodicity). In the numerical scheme the performance of the specified condition
is provided by the requirement of coincidence during each moment of time of the solution in
points that are separated a distance H from one another along lines parallel to the front of
the cascades.

Figure 10. Fragment of a computational grid for 3 cascades stator-rotor-stator (N1 =N3 =34,N2 =35).
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We have used a numerical method to solve the Navier-Stokes equations that is based
on Godunov’s scheme with increased high order of accuracy [25]. The method allows us to
obtain numerically a steady solution of second-order accuracy in the spatial variables and
first-order accuracy in time. The system of equations for the turbulence parameters q and ω

is written in divergence form and is solved similarly.
With flow parameters prescribed at the inlet and outlet boundaries of the computational

domain and a given speed u of cascade 2, the calculations were carried out until a periodic
solution was obtained.

Figure 11 shows a portion of the instant entropy contours obtained for the grid presented
in Figure 10. The data were obtained for atmospheric conditions for an axial inlet flow (α=0)
and u=262·5 m/s. On the presented portion the evolution of vortical wakes behind cascades 1
and 2 is quite visible, and the phase displacement on the next airfoils of cascade 2 is clearly
observed.

It should be noted that the computing time required for obtaining the periodic solution
is essentially longer than the time required for obtaining the stationary solution, and it cer-
tainly depends strongly on the number of computational grid points. For real blade numbers,
even the 2D unsteady numerical simulation is extremely laborious. On the other hand, as was
noted in Section 3, an artificial reduction of the numbers Nµ (µ=1,2,3) can change signifi-
cantly the parameters of the periodic flow. For large variations of the initial data (including
the parameter ν) these circumstances force one to resort to a computing grid with rather a
small number of grid points. This, in turn, requires a careful analysis of the numerical results.
If it is necessary to substantially increase the number of grid points with a corresponding
reduction of the initial data, the numerical solution is considered as an independent (in rela-
tion to physical) experiment; see below.

4.3. Comparison with experiment and some effects of stators clocking

Experimental research regarding the unsteady interaction of a system stator-rotor-stator rows
was carried out on a model of an axial compressor. Static pressure pulsations on the rotor
case, total pressure pulsation behind a rotor and behind a stage, and also the unsteady
velocity field behind a rotor were measured by a two-component laser anemometer. The

Figure 11. Entropy contours for three cascades stator-rotor-stator (N1 =N3 =34,N2 =35).
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experiments and the technique for processing the measured data were based on the analysis
of flow kinematics in mutually moving rows (see Section 2). The comparisons of theory and
experiment presented here refer to various physical effects of a mutual circumferential shift of
the stators.

4.3.1. Flow pulsations on rotor blades
The system of cascades shown in Figure 7 corresponds to the cylindrical section on the mid-
span radius of a subsonic axial compressor designed with the following parameters: total
pressure ratio 1·31; adiabatic efficiency 0·88 at a rotor-blade-tip speed 300 m/s; hub/tip ratio
diameter 0·75. The number of vanes in the stators (rows 1 and 3) is equal to 34, and num-
ber of blades in the rotor (row 2) is equal to 35. The axial gaps on mid-span radius are
�12 =0·84h1;�23 =0·27h3, respectively.

Figure 12 shows experimental and computed values of �E(ν)=
√∫ 1

0 �ε
2 dy0, where

�ε= ε(x, y0)−E(x)
E(x)

×100%, ε(x, y0)=
√

1
T0

∫ T0

0
[P(x, y0, t)−P0]2dt, E(x)=

∫ 1

0
εdy0.

Here the coordinate y0 is related to the general pitch of rows 1 and 3, hs =h1 =h3;T0 =h2/u

is the period of pressure pulsations in the stator frame of reference; P(x, y0, t) is the instan-
taneous value of the static pressure on the rotor case, and P0 is its time-averaged value. The
value of P was measured by five transducers at regular intervals located along an axis of the
compressor from the inlet (transducer no. 1) up to the outlet (transducer no. 5) front of a
rotor. Figure 12 shows the results concerning the transducers 1, 3 and 5. The variation of the
y0 coordinate is achieved by simultaneous turn of rows 1 and 3, and the variation of param-
eter ν is achieved by a turn of row 1 with respect to row 3 in the direction of rotor rotation.

Static pressure pulsations on the casing are caused by its non-uniformity in a rotor blade
channel, and according to Section 2, its rms deviation relative to P0 has the circumferen-
tial period hs . The value of ε averaged over the period hs is denoted by E and corresponds
to pulsations P caused by time-averaged aerodynamic loading on the rotor blades. Thus, the
quantity �E is a measure of pressure pulsations on the rotor blades caused by their interac-
tion with the next rows.

The calculation of �E(ν) for a fixed axial coordinate x is executed as a result of the solu-
tion of the potential-vortical interaction problem involving three cascades on mid-span radius
of a stage. The solution in the rotor blade channel is obtained, upon which the calculation
of the coefficients �kl=Pkl allows one to proceed in the stator frame of reference (x, y0, t) in
which the measurements are executed.

As can be seen from the obtained data, the stators’ clocking affects significantly the rotor-
blade pressure pulsations. The theory of potential-vortical interaction describes correctly the
character of this effect for subsonic flows and can be used for an estimate of the expected
effects related to pressure pulsations caused by rotor-stator interaction.

As was noted above, theoretical values of P0 and E(x) do not depend on ν. In the exper-
iments, the rms deviation on ν did not exceed 0·13% for P0 and 1·7% for E concerning their
mean values.

More complete experimental investigations of the effect of the mutual circumferential sta-
tors shift in a system of stator-rotor-stator rows were carried out on a large-sized (external
diameter 1·2 m) experimental setup containing in the working part a stage of the axial com-
pressor with inlet guide vanes (IGV) [17]. The stage is designed to have a total pressure ratio
1·05; adiabatic efficiency 0·9, rotor rotation speed 2000 rot/min, mass flow rate 30·8 kg/s, and
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Figure 12. Effect of mutual stators shift ν on RMS
value �E of a tangential non-uniformity of static
pressure pulsations for transducers No. 1 (a), No. 3
(b), No. 5 (c). ♦ – experiment; � – calculation.

Figure 13. Cascades of airfoils in cylindrical section
of an experimental stage of the axial compressor.

Figure 14. Stators clocking effect on radiated noise
and comparison with flow pulsations on the rotor
blades. � – calculation, assembly 1, x – experiment,
assembly 1, ♦ – experiment, assembly 2.

hub/tip ratio diameter 0·8. The number of vanes in the IGV and stator are equal to 36, and
38 in the rotor. Cascades of airfoils on the cylindrical section of a flowing path on mid-span
radius are shown in Figure 13. The theoretical and experimental data presented below are
obtained for a design operating mode of the stage.

As follows from (18), for an equal number of IGV and stator vanes, the effect of their
mutual circumferential shift depends on the axial gaps �12 and �23 between the rows. In
Table 1, the results of a calculation by the theory of potential-vortical interaction of E and
〈E〉 at various axial gaps, are presented for

E=
∫ 1

0
ε1(ν)dν, 〈E〉=

√
√
√
√
∫ 1

0

[
ε1(ν)−E

E

]2

dν×100%,
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ε1(ν)=

√
√
√
√ 1
T0

∫ T0

0

[
�2(t)−�2

�2

]2

dt×100%,

where �2(t) is the circulation of the flow on an airfoil of cascade 2 (Figure 13) at t , and �2

is its time-averaged value. Here the axial gaps are given for the hub sections and are in mm.
The computed results are given as the relation E/〈E〉.

As can be seen from Table 1, among the considered axial gaps the following sets appear:
�12 =�23 =15 mm and �12 =60 mm, �23 =5 mm. In both cases the values of the pulsations
of the velocity circulation E averaged over ν are close; however, their rms deviations from E

differ by more than a factor of 2. No doubt, this is due to the fact that, in the second case,
the effect on the pulsations of flow velocity on cascade 2 caused by its interaction with cas-
cade 3 is more important than the effect of the vortical wakes of cascade 1.

Measurements of pressure pulsations on rotor blades similar to those presented in Fig-
ure 12 and executed during the investigated stage for assemblies 1 (�12 =�23 =15 mm) and 2
(�12 =60 mm, �23 =5 mm) confirm the calculated prediction [17].

4.3.2. Generation of noise
Pressure pulsations on rotor blades are one of the sources of noise generation radiated by
a turbomachine on frequencies that are multiples of the rotor-blade passing frequency. It can
be expected that a significant variation of the level of pressure pulsations on the rotor blades,
owing to a circumferential shift of the next stators, results in a corresponding change in the
generated noise.

In Figure 14 for the compressor assemblies 1 and 2 we present the dependencies

ε0 = ε0(ν)= L(ν)−L
L

,

where L(ν) is the intensity of sound radiated in 1/3 octave band containing the basic rotor-
blade passing frequency, and L is the value of L averaged over ν. The sound intensity was
measured in the inlet plenum located on an entrance in a working part of the experimental
setup and confirmed in the reverberation chamber [28]. The variation of the parameter ν was
carried out here by a turn of the stator relative to IGV towards the rotation of a rotor.

For comparison, we show in Figure 14 the quantity

µ(ν)= ε1(ν)−E
E

Table 1. Ratios of �12 and �23.

�12, mm 5 15 25 35 60

�23, mm

5 6·2/40·5 4·2/38 4·3/27 4·3/20·5 4·3/15
15 5·8/34 4·2/41 3·6/34 – –
25 5·5/30·5 3·8/39 3·3/34 3·1/27·5 3·0/21
35 – 3·5/33 2·8/33·5 – –
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averaged over 13 cylindrical sections of a flowing path from the hub up to the periphery of
assembly 1. In each of the sections, the calculation was carried out according to the theory
of potential-vortical interaction of cascades.

From the data obtained it is seen that, according to Table 1, the relative change of the
intensity of the radiated noise as a result of variations of the parameter ν is much higher for
assembly 1 than for assembly 2. The total variation of the noise, expressed in decibels and
determined by the formula

�D=10· 10log
1+max

ν
ε0

1+min
ν
ε0

[dB]

is 4·5 dB for assembly 1 and 2·1 dB for assembly 2.
A comparison of values ε0 =ε0(ν) and µ=µ(ν) serves to show that the calculation by the

described theory allows us to estimate the stators’ clocking effect on the radiated noise.

4.3.3. Total pressure losses and vortical wakes of rotor
In the references [7–13], which are devoted to experimental investigations of the stators’ clock-
ing effects, it is shown that the parameter ν affects the total pressure losses in a stage of a
turbomachine. Measurements were carried out, both by a rake probe of total pressure and
by probes equipped with high-frequency transducers, which were shifted over the radius and
measured the instantaneous values of the stagnation pressure.

As an illustration, we show in Figure 15a (curve 1) the dependence of the quantity

λ(ν)= �P(ν)−�P
�P

×100%

on the parameter ν, where �P is the difference in stagnation pressures averaged over time
and on a circle and measured on the mid-span radius behind cascade 3 (90 mm from stator
trailing front) and behind cascade 2 (11 mm from rotor trailing front), and �P is the value
of �P averaged over ν. Measurements have been executed on the above-mentioned experi-
mental installation in assembly 1, which on the mid-span radius corresponds to an axial gap
�23 =20·5 mm. A similar dependence obtained by a numerical solution of the Reynolds equa-
tions (see Section 4.2) is presented in Figure 15b. The calculations were carried out for N1 =
N3 =18,N2 =19.

Traditionally, �P is related to the total pressure losses in the stator, i.e., in cascade 3 (see
Figure 13). A detailed analysis of vortical wakes behind the stator of the high-loading model
stage of the compressor [13], as well as periodic stagnation pressure pulsations behind cascade
3 [17], has, however, shown that the losses of the total pressure on the stator vanes actually
depend weakly on ν and cannot explain the obtained values of λ=λ(ν). The most probable
source of the above losses is the dissipation of the periodic free vortices arising in a stage
behind the rotor, i.e., behind cascade 2 (see Figure 13).

Direct comparisons of both experimental and computed values of λ=λ(ν) with intensity
of free vortices are presented in Figure 15. The relative intensity of free vortices was estimated
here by the quantity

µ(ν)= w3(ν)−w3

w3
,

where w3(ν) is a measure of velocity pulsations in the vortical wakes of cascade 2, and w3 is
its value averaged over ν.
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Figure 15. Stators clocking effect on total pressure losses λ(♦) and comparison with the intensity of free vortices
µ(�). (a) experiment; (b) calculation.

The instantaneous flow velocity V =V (r, x, y0, t) behind cascade 2 was measured by a two-
component laser anemometer, and the measurement point was fixed at a distance of 8·5 mm
from the outlet front [18]. As a result of these measurements, the instantaneous projections
of the absolute velocity vector on the axial and tangential (along the front) directions in the
stator frame of reference, were determined for 129 moments of time at 10 points in regular
intervals located on a pitch hs for 10 values of the parameter ν. On the basis of the obtained
data, the expansion coefficients Vkl of (2) were calculated for 20 harmonics in time and for 2
harmonics along the y0 coordinate. According to this, the transition to a rotor frame of refer-
ence ensured expansion (2); it represents the instantaneous value of the relative flow velocity
for 2 harmonics in time and 20 harmonics along the y-coordinate. Thus, the time-averaged
value of vector V0 of the instant relative velocity Vrel in the rotor frame of reference describes
in sufficient detail a stationary vortical wake in the relative flow behind a rotor, and its rms
deviation w1 =〈Vrel −V0〉 describes the level of velocity pulsations over the tangential period,
equal to a pitch of the rotor blades h2 (see Section 2). Further, the value w3(ν) was deter-
mined by the formula

w3(ν)=
√

1
h2

∫ h2

0

[
w1(y)−w1

w1

]2

dy,

where w1 is the value of w1 averaged over h2.
As follows from Figure 15, both experimental and computational data show that the

ranges of ν corresponding to increased or lower losses of the total pressure correlate with the
variation of intensity of velocity pulsations behind a rotor. It is to be expected that the above
velocity pulsations are concentrated in the zones of vortical wakes of airfoils of cascade 2, and
the value µ characterizes the relative change of their intensity at mutual circumferential shift
of IGV and stator.

Indeed, the examples of pitch-wise distribution of w2 =w2(y, ν, t), which equals the projec-
tion onto the vector V0 of (Vrel −V0)/|V0|, which is presented in Figure 16, show that velocity
pulsations are rather significant in the zone of a stationary vortical wake and are practically
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Figure 16. Experimental pitch-wise distribution of flow velocity pulsations behind cascade 2.

absent in the stream core. The value of w2 is determined experimentally and presented in Fig-
ure 16 for ν=0·2, 0·6 and time: t/T =0·5,0·8, when velocity pulsations are in counter-phase.

The data given in Figures 15 and 16 allow us to consider an established fact, namely, that
the part of the total pressure losses in the turbomachine stage is caused by flow-velocity pul-
sations that arise owing to the occurrence of free vortices during rotor-stator interaction.

Comparison of the experimental distributions V0 =V0(y) in vortical wakes with numerical
results obtained by the self-similar theory is satisfactory for a corresponding choice of the
profile-losses coefficient ζ ∗ [18]. The numerical solution has been obtained here for a total
number of grid points equal to 235015 which allowed 33 grid points on a pitch of cascade
2 and permitted to vary the parameter ν over a wide-enough range. The value of the veloc-
ity V0 averaged over a pitch h2 was close to the experimental one; however, the stationary
vertical-wake parameters differed essentially. The experimental and calculated values of λ=
λ(ν) and µ=µ(ν) are shown in Figure 15. These values agree qualitatively, but in a quanti-
tative sense they differ considerably.

5. Periodic vortical wakes of a turbomachine cascade

As follows from the results of Section 4, in a flow around mutually moving cascades of air-
foils vortical wakes are formed behind them, which contain periodic flow-velocity pulsations
which are especially intensive near the wake axis. From experimental data (see Figure 16) it
is easy to conclude that the vorticity of the velocity-pulsation part achieves its maximum (in
modulus) values on the wake axis; it is close to zero in the stream core and depends essen-
tially on the unsteady part of the velocity circulation on the airfoil (effect of the parameter
ν). Nevertheless, the distribution of the unsteady velocity in a flow behind an airfoil similar
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Figure 17. Distribution of flow vorticity in a wake of an airfoil of cascade 2. |ω1| = |�1(y)|/|�1(y1)|. (♦ – experi-
ment, � – calculation).

to that of Figure 16 differs sufficiently from both the model of contact discontinuity and the
model of viscous diffusion assumed in Section 3.

The structure of the vortical wakes containing periodic free vortices has been considered
in more detail. Clearly, this problem is related to the definition of energy dissipation in a
flow containing free vortices, and goes beyond the scope of the problem of the interaction
of hydrodynamic cascades.

5.1. Distribution of periodic vorticity in the wake

To investigate the unsteady vorticity behind airfoils of cascade 2 experimentally, velocity mea-
surements similar to those described in Section 4.3.3 have been executed in sections located
at distances of 8, 10, and 12 mm from the front outlet. The required vorticity is presented in
the form

�=
∑

k

∑

l

�kl(r, x)·ei2πl y/h2 ·ej2πk y/hs ·e−j2πk ut/hs ,�kl = 1
2

[
∂Vykl

∂x
−2π

(

i
l

h2
+ j

k

hs

)

Vxkl

]

,

(19)

where Vxkl, Vykl are the coefficients of expansion (2) for the axial and tangential components
of the vector V −V0, respectively, and the derivative ∂Vxkl/∂x was calculated approximately
from measurements in three sections.

The numerical solution of the vorticity was carried out under the assumption that N1 =
N2 =N3 = 1 for 220 × 30 O-grid points and 161 × 185 H-grid points in each of the cascades.
Thus, the difference in the computated time-averaged parameters of the vortical wake from
experimental data remained within the limits of the experimental error.

Figure 17 shows the computed and experimental values of the quantity

|ω1(�y)|=
∣
∣
∣
∣
�1(y)

�1(y0)

∣
∣
∣
∣ , �1(y)=

20∑

m=−20

�1mei2πm·y/h2 , �y= y−y0

h2
,

were y = y0 is the ordinate of the axis of the stationary vortical wake. Distributions were
obtained for ν=0·2.

An essential feature of the obtained theoretical and experimental distributions of |�1(y)| is
its non-monotonic variation with increasing distance from the vertical-wake axis. In the flow
core, the value |�1| does not exceed 0·1×|�1(y1)|. The presented results allow the conclusion
that periodic free vortices behind cascade 2 intensively diffuse in zones of stationary vorti-
cal wakes of airfoils. Thus, in contrast with diffusion in a uniform flow, with a monotonic
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decrease of vorticity with increasing distance from the source, the diffusion of free vortices
results in a non-monotonic distribution across a stationary vortical layer.

As one would expect, the nature of the distribution of vorticity as obtained from calcula-
tions essentially depends on the number of computational grid points. In particular, the cal-
culations executed for numbers of grid points of the O- and of H-grids, respectively, 100 ×
16,81 × 33;160 × 26,121 × 93 and 220 × 30,160 × 185 show that, in the first case, the dis-
tribution |�1(y)| differed considerably from the experimental one over the entire rotor pitch
(0≤y≤h2). For the second and third grid-points values, the difference concerns mainly a part
of a local maximum above the vertical-wake axis (y − y1 > 0). It should be noted that this
area is located outside the airfoil suction surface of cascade 2 (see Figure 13). It is possible
to assume that, in a numerical simulation, the boundary layer on the suction surface of an
airfoil is described with insufficient accuracy.

5.2. Diffusion of free vortices in turbulent flow

We consider here a semi-empirical model of turbulent diffusion of free vortices that allows us
to describe the vorticity distribution obtained in Section 5.1. It is assumed that the velocity
of free-vortex shedding is equal to the time-averaged flow velocity in a vortical wake of the
airfoil and diffusion, without taking into account the viscosity, occurs because of turbulent
pulsations of this velocity across the wake. In other words, free vortices are assumed passive
and do not affect the turbulence parameters in a vortical wake. It is possible to expect that a
similar model corresponds to real conditions when the frequency of turbulent pulsations con-
siderably exceeds the frequency of free-vortex pulsations.

Let the axis Ox1 of a Cartesian frame of reference (x1, y1) be counted from the trailing
edge along a stationary vortical wake. The equation of turbulent diffusion of the vorticity �=
�(x1, y1, t) in the case under consideration has the form

∂�

∂t
+V0(x1, y1)

∂�

∂x1
= ∂

∂y1

(

D· ∂�
∂y1

)

, (20)

where D is the diffusion coefficient, and the velocity of the free-vortices shedding V0 (see,
for example, (11)) can be presented according to the self-similar theory of turbulent vortical
wakes in the form

V0 =V1[1−u1(x1, y1)], u1 = χ√
x1
u1(η), η=y1/

√
x1h2, u1(0)=1.

Here V1 = const is the velocity in the flow core; χ is a rather small value (∼ 0·1) that is
uniquely determined by the coefficient of the profile losses. From here Equation (20), in
dimensionless form, becomes

1
q

∂�

∂t
+ ∂�

∂x
−d ∂

2�

∂y2
1

= χ√
x1
u1(η)

∂�

∂x1
,

where

d= D

V1·h2
, �= �h2

V1
, q= ωh2

V1
, ω=u/h2. (21)

Henceforth the coordinates x1, y1, and t are assumed to be compared with h2 and h2/V1,
respectively.

The layer of free vortices in the vicinity of the trailing edge of an airfoil is assumed to be
a line of contact discontinuity of the velocity, which is determined by Equation (12). From



Hydrodynamic interaction of axial turbomachine cascades 33

here the value of the vorticity at point x1 =0 is given by

�(0, y1, t)=γ (0, t)·δ(y1)=− 1
V1

∂�

∂t
·δ(y1), �=

∑

k

�k·e−i2πkωt , (22)

where δ is the Dirac’s delta-function.
For χ = 0 Equation (21) corresponds to diffusion in a uniform flow with velocity V1. A

solution that is periodic in time satisfying the boundary condition (22), as well as the condi-
tions of symmetry over the y1-coordinate and attenuating for y1 →∞, results in a distribution
of the velocity in a diffusion layer determined by Equation (14), where it is necessary to put
Re=d−1. The solution of Equation (21) satisfying the above conditions has the form

�= 1√
x1

·e−η2/4d
∑

k
(k �=0)

Ak·
[

1+ χ√
x1
f1(η)+ i2πkqχ

√
x1f2(η)

]

e−i2πk(t−qx1),

f1(η)= η

d

∫ ∞

η

1

η2
1

·eη2/4d ·
∫ ∞

η1

(
1
2

− η2
2

4d

)

η2u1(η2)e
−η2

2/4ddη2dη1, (23)

f2(η)= 1
d

eη
2/4d
∫ ∞

η

e−η2
1/4d ·

∫ η1

0
u1(η2)dη2dη1, Ak = const

to within an accuracy determine by χ .
Solution (23) differs significantly from the case χ = 0 in that the whirling fluid particles

form a straight line normal to the vortical wake axis at some moment of time and are then
bent. Free vortices diffusing in the layers lying at a larger distance from the wake axis are
transported at a velocity that exceeds the velocity of vortices located on the axis. For a fixed
value of x1 the distribution across a layer of vorticity amplitude depends on the number of
the time harmonic k. For a fixed value of y1, the amplitude of the vorticity approaches a finite
(�= 0) value for increasing x1 and the axial density of the total vorticity across the diffusion
layer increases as

√
x1.

A relation between the coefficients Ak of series (23) and �k(k=0,±1, . . .) for the expansion
of the velocity circulation on an airfoil (see Equation (22)) follows from the condition of pres-
ervation of total vorticity in a flow for the entire time of free-vortices formation. For a steady
periodic flow (i.e., proceeding for an infinitely long time) this condition gives the relation

lim
x1→∞

d
dt

[�(t)+ I (x1, t)]=0,

where

I (x1, t)=
∫ x1

0

∫ ∞

−∞
�(x1, y1, t)dy1dx1.

Upon some algebraic manipulations, we may derive from this:

Ak

[

2
√
πd−χ(1+ i)

√
π

4πkq
(�1 − iπkq�2)

]

=2πkqi�k,

�1 =
∫ ∞

−∞
e−η2/4d ·f1(η)dη, �2 =

∫ ∞

−∞
e−η2/4d·f2(η)dη, (24)

�k =�k/h2V1, k=±1,±2, . . .

Equation (24) can obviously be used, both for a numerical estimate of the coefficients Ak,
if the circulation �(t) on an airfoil is known, and for the determination of the coefficients �k,
if the vorticity � has been measured.



34 V.E. Saren et al.

For χ=0 the coefficient Ak in (24) grows unboundedly when d→0. In this case, as can be
easily concluded from (23), the vorticity � is described by the δ-function; the diffusion layer
degenerates to a line of velocity contact discontinuity, and the coefficients Ak are defined by
the formula Ak =2πkqi�k.

In the general case of χ �= 0, the diffusion-layer width obviously depends on the function
u1 and, generally speaking, on d. Let, for definiteness, the time-averaged velocity in a vortical
wake be given by Equation (11). Then

χ =
√
ζ ∗ cosα
1·52

, u1 =






cos2(πk0η), |η|≤ 1
2k0

0, |η|> 1
2k0

, k0 = 1

1·52
√
ζ ∗ cosα

, (25)

where the parameter χ defines the wake “depth”, and k0 is its half-width corresponding to
the condition |η| = 1/2k0 = η0. In (23), f1(η0)= f2(η0)= 0, and the ratio of the vorticity on
the boundary of a stationary vortical wake and vorticity on its axis is equal to exp(−η2

0/4d).
Figure 18 presents results pertaining to the quantity

ω1(x1, η1)=Reω1 + iImω1 = �1(x1, η1)

�1(x1,0)
, η1 = 2k0y1√

x1
,

where �1 denotes the complex amplitude of the first harmonic in expansion (23), and η1 is
equal to the distance from the vortical wake axis related to the wake half-width. Calculations
were carried out for χ=0·131, and the parameter d1 =k0

√
d, as well as the dimensionless dis-

tance x1 from the trailing edge of an airfoil along the vortical wake axis, were varied.
As can be seen from Figure 18, the value ω1 varies non-monotonically across a wake. For

a fixed value k0, the diffusion dimensionless coefficient d affects significantly the local extreme
in the vicinity of the vortical wake axis.

5.3. Comparison with experiment

Detailed measurements of the instantaneous flow velocity behind cascade 2 (see Figure 13)
have been conducted for a gap �23 = 23 mm. Measurement points were placed at distances
x=6, 8, 10, 12, 14 and 16 mm from the front exit of cascade 2. The mutual position of cas-
cades 1 and 3 remained fixed (ν=0), and measurements were carried out for 20 points in reg-
ular intervals h2 located on a pitch. While determining the derivative ∂Vykl/∂x in expansion
(19), we used a second-order spline approximation on x points. The Reynolds and Strouhal
numbers corresponding to the experimental conditions were equal to Re=6×105,Sh =1·17.

As one would expect, the parameters of the time-averaged vortical wake for the points x=
6 and 16 mm differed appreciably from their values in interval 8 mm ≤x≤14 mm. The coeffi-
cient of the profile losses obtained in this interval is equal to ζ ∗ = 0·063, this value was also
used for the calculation of the diffusion of free vortices.

Figure 19 shows the results of measurements of value |ω1(x,�y)| for sections x=8, 10 and
12 mm. For comparison, the computed results for the diffusion of the first harmonic vorticity
and the data obtained for the numerical solution of the Reynolds equations are also presented
in Figure 19.

Calculation of the diffusion of free vortices was carried out by Equation (23) for the veloc-
ity distribution in the vortical wake as determined by relations (25). In accordance with the
experimentally determined coefficient of the profile losses and an exit flow angle α, it was
concluded that: χ = 0·131, k0 = 3·3. The calculations that were performed for a dimensionless
diffusion coefficient equal to d=4 ×10−4 show good agreement with experimental data con-
cerning the non-monotonic dependence of |ω1(x,�y)| on �y. However, the calculated width
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Figure 18. Theoretical distribution of the first harmonic amplitude of flow vorticity as a result of free vortices diffu-
sion in the wake of R blade.

Figure 19. Comparison of theoretical and experimental distributions of the first harmonic amplitude of free vorti-
ces vorticity in the wake of cascade 2. � – experiment; x – numerical simulation; — calculation by the theory of
diffusion.
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of the diffusion layer proved to be 1·5 times less than in our experiments. We assume that
this is caused by application of the calculations in the field of measurements closely located
to the trailing edges of the airfoils of cascade 2. Actually the character of the formation of
free vortices near the trailing edges, where the boundary-layer thickness is significant, can dif-
fer from the line-of-contact discontinuity adopted in the theory. According to the specified
assumption in the calculations the constant “b” has been entered (see (11)). It allows to pro-
vide a finite (�=0) thickness of the diffusion layer in the trailing edge of an airfoil similarly to
the theory of a self-similar vortical wake. The calculations presented in Figure 17 were exe-
cuted for b=0·13.

A numerical flow simulation was carried out with N1 = N2 = N3 = 1 and a number of
O-grid points equal to 160 × 26 and 121 × 93 H-grid points for each cascade. This provided
93 computational points on a pitch of cascade 2. A further increase in the number of grid
points had a little effect on the amplitude of the first harmonic of a circulation pulsation on
the airfoils of cascade 2.

Comparison of computational and experimental data allows us to conclude that there is a
region of the parameter d for which agreement between the free-vortices diffusion model and
measurement is found. The maximum discrepancies between experiment and numerical simu-
lation are observed on a part of the vortical wake on the side of the suction surface of an
airfoil of cascade 2. This is also borne out by Figure 17.

6. Conclusions

The results of an analytical description of the flow through mutually moving turbomachine
cascades proposed in the present paper are summarized here. The complexity of such a
description is caused mainly by the fact that, for real gaps between cascades, the problem of
their interaction in a flow has no physical meaning without taking into account the vortical
wakes behind airfoils. The analytical description of such wakes assumes the use of empiri-
cal constants. Corresponding theoretical solutions, which are correct in a mathematical sense,
require comparison with experiment. Therefore, much attention has been paid in the present
work to such comparisons.

The analytical solutions obtained in the paper are based on the assumption of flow incom-
pressibility. It limits solutions to subsonic flows, but allows the use of a rather advanced the-
ory of boundary-value problems for analytical functions. The efficiency of the algorithm used
to obtain the solution is ensured by its representation here as a series expansion in powers of
the small parameter �0. This allowed us to reduce the problem in each approximation to an
integral equation on an airfoil of one of the cascades. For airfoils of any form, the numerical
solution of such equations can be carried out with sufficient accuracy on a personal computer
and allows a wide variation of entrance parameters at a small expense of computer time.

It is to be noted that a practical application of numerical methods for the solution of the
equations that apply to turbomachines is essentially limited both by a big expense of com-
puting resources and the small number of test results that are due to an insufficient knowl-
edge of the physical properties of similar flows. The experience concerning the application
of numerical simulations of hydrodynamic interaction of cascades for the calculation of peri-
odic vortical wakes behind airfoils, as presented in this paper, shows a significant discrepancy
with available experimental data, thus necessitating a further improvement of numerical meth-
ods. The analytical description of the distribution of periodic vorticity in a vortical wake as
proposed here can be useful both for engineering estimates and for comparison with results
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of numerical simulation. The obtained results concerning flow properties that were confirmed
by experiment consist in the following:
1. In a flow of two mutually moving cascades, the values of the gaps between them deter-

mine the hydrodynamic-interaction features. For small gaps potential interaction is domi-
nating. For moderate gaps, which are usually used in practice, the potential-vortical inter-
action is important. Vortical interaction is typical for large gaps between cascades.

2. Potential-vortical interaction in a flow of three cascades of a stator-rotor-stator type,
which is a typical arrangement in cascades in axial turbomachines, has been investigated.
It has been found that for multiple airfoils in a total spatial period of the extreme cas-
cades, their mutual shift (clocking) along the front considerably affects the unsteady flow
of the middle cascade.

3. It has been shown that the effect indicated in item 2 results in a variation of the pressure
pulsations on the airfoils of the middle cascade and, as a consequence of this, in a varia-
tion of the radiated noise intensity and total pressure losses in the flow.

4. It has been found that the additional total pressure losses in flows through mutually mov-
ing cascades arise owing to dissipation of the free vortices shedding from airfoils.

5. It has been found that the distribution of the vorticity of periodic free vortices in vortical
wakes of airfoils is described by their turbulent diffusion in a non-uniform flow (Table 2).

Table 2. Nomenclature

D turbulent diffusion coefficient
H =Nµhµ(µ=1,2) common period of two cascades of airfoils
hµ(µ=1,2) pitch of the µth cascade of airfoils
J perturbation of complex conjugate flow velocity in stationary vortex wakes of cas-

cades of airfoils
Jµ(µ=1,2) perturbation of complex conjugate flow velocity caused by free vortices behind the

airfoils of the µth cascade
L sound intensity
Lµm(µ=1,2;m=0,±1, . . .) airfoil of the µth cascade with number m
Nµ(µ=1,2) number of airfoils of the µth cascade in the common circumferential period of

two cascades
P static pressure
Re Reynolds Number
r radial coordinate of a point
s, σ arc coordinates of points on the original cascade airfoil, which are measured from

the outlet edge in positive direction of airfoil tracing (in counter-clockwise man-
ner)

Sh, q Strouhal Number
T ,T0 time periods in the frames of reference of rotor and stator, respectively
t time
u linear velocity of motion of a moving cascade of airfoils
V potential part of complex conjugate flow velocity
V� complex conjugate flow velocity in cascades of airfoils
V∞ complex conjugate flow velocity at an infinite upstream distance from the cascade

of airfoils
x axial coordinate of a point
y, y0 coordinates of a point measured along the front of the cascade of airfoils
z, ζ complex coordinates of points in the plane of the cascade of airfoils
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� gap between two cascades
�12,�23 gaps between the cascades 1–2 and 2–3 in the set of cascades 1–2–3
�ϕ,�ϕ0 angular pitches between the rotor and stator blades, respectively
�µm(µ=1,2;m=0,±1,±2, . . .) circulation of flow velocity on the mth airfoil of the µth cascade
ϕ,ϕ0 angular coordinates of a point
ν relative shift along the front of cascades 1 and 3 in the set of cascades 1–2–3
� flow vorticity caused by turbulent diffusion of free vortices behind the cas-

cade airfoil
�0 angular velocity of rotor rotation
ζ ∗ empirical factor of profile losses
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